
Farm
Smart Contract Audit Report
Prepared for LuckyLion

Date Issued: Sep 21, 2021
Project ID: AUDIT2021024
Version: v1.0
Confidentiality Level: Public

Public

Report Information

Project ID AUDIT2021024

Version v1.0

Client LuckyLion

Project Farm

Auditor(s) Suvicha Buakhom
Peeraphut Punsuwan

Author Suvicha Buakhom

Reviewer Weerawat Pawanawiwat

Confidentiality Level Public

Version History

Version Date Description Author(s)

1.0 Sep 21, 2021 Full report Suvicha Buakhom

Contact Information

Company Inspex

Phone (+66) 90 888 7186

Telegram t.me/inspexco

Email audit@inspex.co

https://t.me/inspexco
mailto:audit@inspex.co

Public

Table of Contents
1. Executive Summary 1

1.1. Audit Result 1
1.2. Disclaimer 1

2. Project Overview 3
2.1. Project Introduction 3
2.2. Scope 4

3. Methodology 5
3.1. Test Categories 5
3.2. Audit Items 6
3.3. Risk Rating 7

4. Summary of Findings 8

5. Detailed Findings Information 10
5.1. Token Draining Using migrate() Function 10
5.2. Improper Reward Calculation (Duplicated LP Token) 12
5.3. Improper Reward Calculation (_withUpdate) 17
5.4. Centralized Control of State Variable 21
5.5. Design Flaw in massUpdatePools() Function 23
5.6. Insufficient Logging for Privileged Functions 24
5.7. Unsupported Design for Deflationary Token 26
5.8. Improper Function Visibility 33

6. Appendix 36
6.1. About Inspex 36
6.2. References 37

Public

1. Executive Summary
As requested by LuckyLion, Inspex team conducted an audit to verify the security posture of the Farm smart
contracts between Sep 14, 2021 and Sep 15, 2021. During the audit, Inspex team examined all smart
contracts and the overall operation within the scope to understand the overview of Farm smart contracts.
Static code analysis, dynamic analysis, and manual review were done in conjunction to identify smart
contract vulnerabilities together with technical & business logic flaws that may be exposed to the potential
risk of the platform and the ecosystem. Practical recommendations are provided according to each
vulnerability found and should be followed to remediate the issue.

LuckyLion Farm smart contract has the migration mechanism implemented with the ability to transfer the LP
token to any address. Furthermore, the ownership of the $LUCKY can also be transferred, granting the
minting privilege to another address. These mechanisms have high impacts on the users; however, 2 days
minimum timelock is used by the LuckyLion team to delay the execution of these privileged functions.
Inspex recommends the platform users to closely monitor the timelock contract for the execution of these
functions.

1.1. Audit Result
In the initial audit, Inspex found 1 high, 3 medium, 1 low, 1 very low, and 2 info-severity issues. With the
project team’s prompt response, 1 high, 3 medium, 1 very low, and 2 info-severity issues were resolved or
mitigated in the reassessment, while 1 low-severity issue was acknowledged by the team. Therefore, Inspex
trusts that Farm smart contracts have sufficient protections to be safe for public use. However, in the long
run, Inspex suggests resolving all issues found in this report.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 1

Public

1.2. Disclaimer
This security audit is not produced to supplant any other type of assessment and does not guarantee the
discovery of all security vulnerabilities within the scope of the assessment. However, we warrant that this
audit is conducted with goodwill, professional approach, and competence. Since an assessment from one
single party cannot be confirmed to cover all possible issues within the smart contract(s), Inspex suggests
conducting multiple independent assessments to minimize the risks. Lastly, nothing contained in this audit
report should be considered as investment advice.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 2

Public

2. Project Overview

2.1. Project Introduction
Lucky Lion is the latest addition to the portfolio of APAC’s leading iGaming brands with over 200,000 loyal
monthly active users, allowing players to yield users’ tokens on the decentralized yield farm, play industry
leading iGaming, and stake the reward through the revenue sharing pool to earn even more amazing
rewards.

Farm is the main feature responsible for distributing $LUCKY on the platform. The users can deposit tokens
to the pools added in the farm and earn $LUCKY as a reward.

Scope Information:

Project Name Farm

Website https://app.luckylion.io/farm

Smart Contract Type Ethereum Smart Contract

Chain Binance Smart Chain

Programming Language Solidity

Audit Information:

Audit Method Whitebox

Audit Date Sep 14, 2021 - Sep 15, 2021

Reassessment Date Sep 18, 2021

The audit method can be categorized into two types depending on the assessment targets provided:

1. Whitebox: The complete source code of the smart contracts are provided for the assessment.
2. Blackbox: Only the bytecodes of the smart contracts are provided for the assessment.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 3

https://app.luckylion.io/farm

Public

2.2. Scope
The following smart contracts were audited and reassessed by Inspex in detail:

Initial Audit: (Commit: db276805128df07538bbd8ee0ec837584194901a)

Contract Location (URL)

MasterChef https://github.com/LuckyLionIO/Lucky-farm/blob/db27680512/contracts/Maste
rchef.sol

SyrupBar https://github.com/LuckyLionIO/Lucky-farm/blob/db27680512/contracts/Syrup
Bar.sol

Reassessment: (Commit: 5aa5780d15ce4b471d49abb3cba09ac7203975f2)

Contract Location (URL)

MasterChef https://github.com/LuckyLionIO/Lucky-farm/blob/5aa5780d15/contracts/Maste
rchef.sol

SyrupBar https://github.com/LuckyLionIO/Lucky-farm/blob/5aa5780d15/contracts/Syrup
Bar.sol

The assessment scope covers only the in-scope smart contracts and the smart contracts that they are
inherited from.

The transferLuckyOwnership() function has been added in the reassessment commit. This function is out
of the audit scope but may cause risks to users that the owner can change the owner of the $LUCKY and
manually mint an arbitrary number of $LUCKY.

We have notified the LuckyLion team of our concern, and the team has decided to leave this function as is
and clarified that this function is designed for migrating the minter to a new MasterChef contract if there is
any major problem with the contract in the future, so it is very unlikely that this function will be used.

Moreover, the transferLuckyOwnership() function can only be called by the contract owner, and the
owner of the MasterChef contract is the Timelock contract with 2 days minimum delay. Therefore, Inspex
trusts that this risk should be known to the users.

Finally, we strongly recommend that the platform users should monitor the execution of functions in the
timelock and act accordingly.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 4

https://github.com/LuckyLionIO/Lucky-farm/blob/db27680512/contracts/Masterchef.sol
https://github.com/LuckyLionIO/Lucky-farm/blob/db27680512/contracts/Masterchef.sol
https://github.com/LuckyLionIO/Lucky-farm/blob/db27680512/contracts/SyrupBar.sol
https://github.com/LuckyLionIO/Lucky-farm/blob/db27680512/contracts/SyrupBar.sol
https://github.com/LuckyLionIO/Lucky-farm/blob/5aa5780d15/contracts/Masterchef.sol
https://github.com/LuckyLionIO/Lucky-farm/blob/5aa5780d15/contracts/Masterchef.sol
https://github.com/LuckyLionIO/Lucky-farm/blob/5aa5780d15/contracts/SyrupBar.sol
https://github.com/LuckyLionIO/Lucky-farm/blob/5aa5780d15/contracts/SyrupBar.sol

Public

3. Methodology
Inspex conducts the following procedure to enhance the security level of our clients’ smart contracts:

1. Pre-Auditing: Getting to understand the overall operations of the related smart contracts, checking
for readiness, and preparing for the auditing

2. Auditing: Inspecting the smart contracts using automated analysis tools and manual analysis by a
team of professionals

3. First Deliverable and Consulting: Delivering a preliminary report on the findings with suggestions
on how to remediate those issues and providing consultation

4. Reassessment: Verifying the status of the issues and whether there are any other complications in
the fixes applied

5. Final Deliverable: Providing a full report with the detailed status of each issue

3.1. Test Categories
Inspex smart contract auditing methodology consists of both automated testing with scanning tools and
manual testing by experienced testers. We have categorized the tests into 3 categories as follows:

1. General Smart Contract Vulnerability (General) - Smart contracts are analyzed automatically using
static code analysis tools for general smart contract coding bugs, which are then verified manually to
remove all false positives generated.

2. Advanced Smart Contract Vulnerability (Advanced) - The workflow, logic, and the actual behavior
of the smart contracts are manually analyzed in-depth to determine any flaws that can cause
technical or business damage to the smart contracts or the users of the smart contracts.

3. Smart Contract Best Practice (Best Practice) - The code of smart contracts is then analyzed from
the development perspective, providing suggestions to improve the overall code quality using
standardized best practices.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 5

Public

3.2. Audit Items
The following audit items were checked during the auditing activity.

General

Reentrancy Attack

Integer Overflows and Underflows

Unchecked Return Values for Low-Level Calls

Bad Randomness

Transaction Ordering Dependence

Time Manipulation

Short Address Attack

Outdated Compiler Version

Use of Known Vulnerable Component

Deprecated Solidity Features

Use of Deprecated Component

Loop with High Gas Consumption

Unauthorized Self-destruct

Redundant Fallback Function

Advanced

Business Logic Flaw

Ownership Takeover

Broken Access Control

Broken Authentication

Use of Upgradable Contract Design

Insufficient Logging for Privileged Functions

Improper Kill-Switch Mechanism

Improper Front-end Integration

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 6

Public

Insecure Smart Contract Initiation

Denial of Service

Improper Oracle Usage

Memory Corruption

Best Practice

Use of Variadic Byte Array

Implicit Compiler Version

Implicit Visibility Level

Implicit Type Inference

Function Declaration Inconsistency

Token API Violation

Best Practices Violation

3.3. Risk Rating
OWASP Risk Rating Methodology[1] is used to determine the severity of each issue with the following criteria:

- Likelihood: a measure of how likely this vulnerability is to be uncovered and exploited by an attacker.
- Impact: a measure of the damage caused by a successful attack

Both likelihood and impact can be categorized into three levels: Low, Medium, and High.

Severity is the overall risk of the issue. It can be categorized into five levels: Very Low, Low, Medium, High,
and Critical. It is calculated from the combination of likelihood and impact factors using the matrix below.
The severity of findings with no likelihood or impact would be categorized as Info.

Likelihood
Impact Low Medium High

Low Very Low Low Medium

Medium Low Medium High

High Medium High Critical

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 7

https://paperpile.com/c/Q1frcv/hzD0z

Public

4. Summary of Findings
From the assessments, Inspex has found 8 issues in three categories. The following chart shows the number
of the issues categorized into three categories: General, Advanced, and Best Practice.

The statuses of the issues are defined as follows:

Status Description

Resolved The issue has been resolved and has no further complications.

Resolved * The issue has been resolved with mitigations and clarifications. For the
clarification or mitigation detail, please refer to Chapter 5.

Acknowledged The issue’s risk has been acknowledged and accepted.

No Security Impact The best practice recommendation has been acknowledged.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 8

Public

The information and status of each issue can be found in the following table:

ID Title Category Severity Status

IDX-001 Token Draining Using migrate() Function Advanced High Resolved *

IDX-002 Improper Reward Calculation (Duplicated LP
Token)

Advanced Medium Resolved

IDX-003 Improper Reward Calculation (withUpdate) Advanced Medium Resolved

IDX-004 Centralized Control of State Variable General Medium Resolved

IDX-005 Design Flaw in massUpdatePools() Function General Low Acknowledged

IDX-006 Insufficient Logging for Privileged Functions Advanced Very Low Resolved

IDX-007 Unsupported Design for Deflationary Token Advanced Info Resolved

IDX-008 Improper Function Visibility Best Practice Info Resolved

* The mitigations or clarifications by LuckyLion can be found in Chapter 5.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 9

Public

5. Detailed Findings Information

5.1. Token Draining Using migrate() Function

ID IDX-001

Target MasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-284: Improper Access Control

Risk Severity: High

Impact: High
The owner of the MasterChef contract can steal all lpToken from the contract.

Likelihood: Medium
Only the contract owner can set the migrator address; however, there is no restriction to
prevent the owner from performing this attack.

Status Resolved *
LuckyLion team has decided to keep this functionality and mitigated this issue by
implementing a timelock mechanism. The MasterChef contract is owned by the
Timelock contract with 7 days delay and 2 days minimum delay.

Timelock contract with 2 days minimum delay:
https://bscscan.com/address/0x4b6c8959a41475347226d51f37ec9a1e09f39a92#code

MasterChef contract:
https://bscscan.com/address/0xb6fe67c8a28d50c50f65fdb5847ee4477c550568#code

Ownership transfer of MasterChef to Timelock contract:
https://bscscan.com/tx/0xb54a48f780f6912f283b0113dfbb9fbef4d0f9e421bc532bb9c41a4
3cc15140f#eventlog

Platform users should monitor the execution of functions in the timelock and act
accordingly.

5.1.1. Description
In the MasterChef contract, the setMigrator() function can be used by the contract owner to set the
migrator address.

Masterchef.sol

196
197
198

function setMigrator(IMigratorChef _migrator) public onlyOwner {
migrator = _migrator;

}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 10

https://bscscan.com/address/0x4b6c8959a41475347226d51f37ec9a1e09f39a92#code
https://bscscan.com/address/0xb6fe67c8a28d50c50f65fdb5847ee4477c550568#code
https://bscscan.com/tx/0xb54a48f780f6912f283b0113dfbb9fbef4d0f9e421bc532bb9c41a43cc15140f#eventlog
https://bscscan.com/tx/0xb54a48f780f6912f283b0113dfbb9fbef4d0f9e421bc532bb9c41a43cc15140f#eventlog

Public

The migrate() function can be called by anyone. When the migrate() function is called, the MasterChef
contract will allow the migrator to spend all lpToken balance in the contract.

Masterchef.sol

201
202
203
204
205
206
207
208
209
210

function migrate(uint256 _pid) public {
require(address(migrator) != address(0), "migrate: no migrator");
PoolInfo storage pool = poolInfo[_pid];
IERC20 lpToken = pool.lpToken;
uint256 bal = lpToken.balanceOf(address(this));
lpToken.safeApprove(address(migrator), bal);
IERC20 newLpToken = migrator.migrate(lpToken);
require(bal == newLpToken.balanceOf(address(this)), "migrate: bad");
pool.lpToken = newLpToken;

}

The contract owner can steal all lpToken in the contract by setting the migrator address to a malicious
address and use transferFrom() function to transfer all lpToken from MasterChef to any address.

5.1.2. Remediation
Inspex suggests removing the migration mechanism from the MasterChef contract.

However, if the migration is needed, Inspex suggests mitigating this issue by implementing a timelock
mechanism with a sufficient length of time to delay the changes. This allows the platform users to monitor
the timelock and be notified of the potential changes being done on the smart contracts.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 11

Public

5.2. Improper Reward Calculation (Duplicated LP Token)

ID IDX-002

Target MasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: Medium

Impact: Medium
The $LUCKY reward miscalculation can lead to an unfair $LUCKY token distribution to the
users.

Likelihood: Medium
It is possible that the contract owner will add or migrate a new pool that uses the same
token as another pool since there is no restriction.

Status Resolved
LuckyLion team has resolved this issue as suggested in commit
5aa5780d15ce4b471d49abb3cba09ac7203975f2.

5.2.1. Description
In the MasterChef contract, a new staking pool can be added using the add() function. The staking token
for the new pool is defined using the _lpToken variable; however, there is no additional checking whether
the _lpToken is already used in other pools or not.

Masterchef.sol

128

129

130

131
132
133
134

135
136
137
138
139

function add(uint256 _allocPoint, IERC20 _lpToken, uint256
_harvestIntervalInMinutes,uint256 _farmStartIntervalInMinutes, bool
_withUpdate) public onlyOwner {

uint256 _harvestTimestampInUnix = block.timestamp +
(_harvestIntervalInMinutes *60); //*60 to convert from minutes to second.

uint256 _farmStartTimestampInUnix = block.timestamp +
(_farmStartIntervalInMinutes *60);

if (_withUpdate) {
massUpdatePools();

}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({

lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 12

Public

140
141
142
143
144

145

accLuckyPerShare: 0,
harvestTimestamp: _harvestTimestampInUnix,
farmStartDate : _farmStartTimestampInUnix

}));
emit

PoolAdded(_lpToken,_allocPoint,_harvestTimestampInUnix,_farmStartTimestampInUni
x);
}

There is also the migrate() function that can change lpToken without checking if they are duplicates.

Masterchef.sol

201
202
203
204
205
206
207
208
209
210

function migrate(uint256 _pid) public {
require(address(migrator) != address(0), "migrate: no migrator");
PoolInfo storage pool = poolInfo[_pid];
IERC20 lpToken = pool.lpToken;
uint256 bal = lpToken.balanceOf(address(this));
lpToken.safeApprove(address(migrator), bal);
IERC20 newLpToken = migrator.migrate(lpToken);
require(bal == newLpToken.balanceOf(address(this)), "migrate: bad");
pool.lpToken = newLpToken;

}

In the updatePool() function, the balance of pool.lpToken in the contract is used as a denominator to
calculate pool.accLuckyPerShare.

Masterchef.sol

213
214
215
216
217
218
219
220
221
222
223
224

225
226

227
228

function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
if (block.number <= pool.lastRewardBlock) {

return;
}
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (lpSupply == 0 || pool.allocPoint == 0) {

pool.lastRewardBlock = block.number;
return;

}
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 luckyReward =

multiplier.mul(luckyPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
//new one
// check at final to mint exact lucky to complete the round 9 million and

100 millions totalsupply
uint256 luckyRewardForDev = luckyReward.mul(devMintingRatio).div(10000);
//logic to prevent the minting exceeds the capped totalsupply
//1st case, reward for dev will exceed Lucky's totalSupply so we limit the

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 13

Public

229
230
231
232
233
234

235
236

237
238
239
240

241
242
243
244

245
246
247
248

249
250
251
252

253
254
255

256
257
258

259
260
261

262
263
264
265
266

minting amount to syrup.
if (luckyRewardForDev.add(lucky.totalSupply()) > lucky.cap()) {

uint256 remainingReward = lucky.cap().sub(lucky.totalSupply());
//in case that remainingReward > capped reward for dev.
if (remainingReward.add(accumulatedRewardForDev) > capRewardForDev) {

uint256 lastRemainingRewardForDev =
capRewardForDev.sub(accumulatedRewardForDev);

lucky.mint(devAddress,lastRemainingRewardForDev);
accumulatedRewardForDev =

accumulatedRewardForDev.add(lastRemainingRewardForDev);
//the rest is minted to users.
lucky.mint(address(syrup),lucky.cap().sub(lucky.totalSupply()));

}
//normal case that dev's caped reward has not been reached yet, but the

totalSupply of Lucky is reached.
else {

lucky.mint(devAddress, remainingReward);
//track the token that is minted to dev.
accumulatedRewardForDev =

accumulatedRewardForDev.add(remainingReward);
}

}
//supply cap was not reached and capRewardForDevev still has room to mint

for.
else {

//capRewardForDev is reached.
if (luckyRewardForDev.add(accumulatedRewardForDev) > capRewardForDev) {

uint256 lastRemainingRewardForDev =
capRewardForDev.sub(accumulatedRewardForDev);

lucky.mint(devAddress,lastRemainingRewardForDev);
//track the token that is minted to dev.
accumulatedRewardForDev =

accumulatedRewardForDev.add(lastRemainingRewardForDev);

//mint the left portion of dev to the pools.
lucky.mint(address(syrup),luckyRewardForDev

.sub(lastRemainingRewardForDev));

if (luckyReward.add(lucky.totalSupply()) > lucky.cap()){
lucky.mint(address(syrup),lucky.cap()

.sub(lucky.totalSupply()));
}
else {

lucky.mint(address(syrup),luckyReward);
}

}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 14

Public

267
268
269
270
271

272
273
274

275
276
277
278
279
280
281
282

283
284

else {

lucky.mint(devAddress,luckyRewardForDev);
accumulatedRewardForDev =

accumulatedRewardForDev.add(luckyRewardForDev);

if (luckyReward.add(lucky.totalSupply()) > lucky.cap()){
lucky.mint(address(syrup),lucky.cap()

.sub(lucky.totalSupply()));
}
else{

lucky.mint(address(syrup),luckyReward);
}

}
}
pool.accLuckyPerShare =

pool.accLuckyPerShare.add(luckyReward.mul(1e12).div(lpSupply));
pool.lastRewardBlock = block.number;

}

When the owner of MasterChef adds a pool with the same lpToken as another pool, the lpToken value is
counted from all pools using the same lpToken, resulting in a higher value of denominator (lpSupply) than
it should be.

5.2.2. Remediation
Inspex suggests validating the _lpToken address in add() and migrate() functions to prevent duplicated
_lpToken when adding a new pool as shown in the following example:

Masterchef.sol

77 mapping(address => bool) public isAddedPool;

Masterchef.sol

128

129
130

131

132
133
134

function add(uint256 _allocPoint, IERC20 _lpToken, uint256
_harvestIntervalInMinutes,uint256 _farmStartIntervalInMinutes, bool
_withUpdate) public onlyOwner {

require(!isAddedPool[address(_lpToken)], "add: Duplicated LP Token");
uint256 _harvestTimestampInUnix = block.timestamp +

(_harvestIntervalInMinutes *60); //*60 to convert from minutes to second.
uint256 _farmStartTimestampInUnix = block.timestamp +

(_farmStartIntervalInMinutes *60);
if (_withUpdate) {

massUpdatePools();
}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 15

Public

135

136
137
138
139
140
141
142
143
144
145

146
147

uint256 lastRewardBlock = block.number > startBlock ? block.number :
startBlock;

totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({

lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accLuckyPerShare: 0,
harvestTimestamp: _harvestTimestampInUnix,
farmStartDate : _farmStartTimestampInUnix

}));
emit PoolAdded(_lpToken,_allocPoint,_harvestTimestampInUnix,

_farmStartTimestampInUnix);
isAddedPool[address(_lpToken)] = true;

}

Masterchef.sol

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

function migrate(uint256 _pid) public {
require(address(migrator) != address(0), "migrate: no migrator");
PoolInfo storage pool = poolInfo[_pid];
IERC20 lpToken = pool.lpToken;
uint256 bal = lpToken.balanceOf(address(this));
lpToken.safeApprove(address(migrator), bal);
IERC20 newLpToken = migrator.migrate(lpToken);

require(!isAddedPool[address(newLpToken)], "migrate: Duplicated LP Token");
require(bal == newLpToken.balanceOf(address(this)), "migrate: bad");

isAddedPool[address(pool.lpToken)] = false;
pool.lpToken = newLpToken;
isAddedPool[address(pool.lpToken)] = true;

}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 16

Public

5.3. Improper Reward Calculation (_withUpdate)

ID IDX-003

Target MasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: Medium

Impact: Medium
The $LUCKY reward miscalculation can lead to an unfair $LUCKY token distribution to the
users.

Likelihood: Medium
The add() and the set() functions can only be called by the contract owner, but it is
possible that the totalAllocPoint state will be changed without setting the
_withUpdate parameter to true .

Status Resolved
LuckyLion team has resolved this issue as suggested in commit
5aa5780d15ce4b471d49abb3cba09ac7203975f2.

5.3.1. Description
The totalAllocPoint variable is used to determine the portion that each pool would get from the total
reward minted, so it is one of the main factors used in the rewards calculation. Therefore, whenever the
totalAllocPoint variable is modified without updating the pending reward first, the reward of each pool
will be incorrectly calculated.

In the add() and set() functions shown below, if _withUpdate is set to false, the totalAllocPoint
variable will be modified without updating the rewards (massUpdatePools()).

Masterchef.sol

128

129

130

131
132
133
134

function add(uint256 _allocPoint, IERC20 _lpToken, uint256
_harvestIntervalInMinutes,uint256 _farmStartIntervalInMinutes, bool
_withUpdate) public onlyOwner {

uint256 _harvestTimestampInUnix = block.timestamp +
(_harvestIntervalInMinutes *60); //*60 to convert from minutes to second.

uint256 _farmStartTimestampInUnix = block.timestamp +
(_farmStartIntervalInMinutes *60);

if (_withUpdate) {
massUpdatePools();

}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 17

Public

135
136
137
138
139
140
141
142
143
144

145
146
147

148

149

150

151
152
153
154

155
156
157
158

159

totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({

lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accLuckyPerShare: 0,
harvestTimestamp: _harvestTimestampInUnix,
farmStartDate : _farmStartTimestampInUnix

}));
emit PoolAdded(_lpToken,_allocPoint,_harvestTimestampInUnix,

_farmStartTimestampInUnix);
}

// Update the given pool's lucky allocation point. Can only be called by the
owner.
function set(uint256 _pid, uint256 _allocPoint, uint256
_harvestIntervalInMinutes,uint256 _farmStartIntervalInMinutes, bool
_withUpdate) public onlyOwner {

uint256 _harvestTimestampInUnix = block.timestamp +
(_harvestIntervalInMinutes *60); //*60 to convert from minutes to second.

uint256 _farmStartTimestampInUnix = block.timestamp +
(_farmStartIntervalInMinutes *60);

if (_withUpdate) {
massUpdatePools();

}
totalAllocPoint =

totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
poolInfo[_pid].allocPoint = _allocPoint;
poolInfo[_pid].harvestTimestamp = _harvestTimestampInUnix;
poolInfo[_pid].farmStartDate = _farmStartTimestampInUnix;
emit PoolSet(_pid,_allocPoint,_harvestTimestampInUnix,

_farmStartTimestampInUnix);
}

For example:

Assuming that on block 1000000, luckyPerBlock is 5 $LUCKY per block, totalAllocPoint is 5000, and
allocPoint of pool id 0 is 500.

Block Action

1000000 All pools’ rewards are updated

1100000 A new pool is added using the add() function, causing the totalAllocPoint to be changed
from 5000 to 10000

1200000 The pools’ rewards are updated once again.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 18

Public

From current logic, the total rewards allocated to the pool id 0 during block 1000000 to 1200000 is equal to
50,000 $LUCKY, calculated using the following equation:

Block Total
Reward

Block

Total
Allocation

Point

Total $LUCKY per block for pool 0
(luckyPerBlock*pool0allocPoint/

totalAllocPoint)

Total pool 0
$LUCKY Reward

1000000 - 1200000 200000 10,000 0.25 $LUCKY per block 50,000 $LUCKY

However, the rewards should be calculated by accounting for the original totalAllocPoint value during
the period when it is not yet updated as follows:

Block Total
Reward

Block

Total
Allocation

Point

Total $LUCKY per block for pool 0
(luckyPerBlock*pool0allocPoint/

totalAllocPoint)

Total pool 0
$LUCKY Reward

1000000 - 1100000 100000 5,000 0.5 $LUCKY per block 50,000 $LUCKY

1100000 - 1200000 100000 10,000 0.25 $LUCKY per block 25,000 $LUCKY

The correct total $LUCKY reward is 75,000 $LUCKY, which is different from the miscalculated reward by 25,000
$LUCKY.

5.3.2. Remediation
Inspex suggests removing the _withUpdate variable in the add() and set() functions and always calling
the massUpdatePools() function before updating totalAllocPoint variable as shown in the following
example:

Masterchef.sol

128

129

130

131
132

133
134
135
136
137
138

function add(uint256 _allocPoint, IERC20 _lpToken, uint256
_harvestIntervalInMinutes,uint256 _farmStartIntervalInMinutes, bool
_withUpdate) public onlyOwner {

uint256 _harvestTimestampInUnix = block.timestamp +
(_harvestIntervalInMinutes *60); //*60 to convert from minutes to second.

uint256 _farmStartTimestampInUnix = block.timestamp +
(_farmStartIntervalInMinutes *60);

massUpdatePools();
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({

lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accLuckyPerShare: 0,

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 19

Public

139
140
141
142

143
144
145

146

147

148

149
150

151
152
153
154

155

harvestTimestamp: _harvestTimestampInUnix,
farmStartDate : _farmStartTimestampInUnix

}));
emit PoolAdded(_lpToken,_allocPoint,_harvestTimestampInUnix,

_farmStartTimestampInUnix);
}

// Update the given pool's lucky allocation point. Can only be called by the
owner.
function set(uint256 _pid, uint256 _allocPoint, uint256
_harvestIntervalInMinutes,uint256 _farmStartIntervalInMinutes, bool
_withUpdate) public onlyOwner {

uint256 _harvestTimestampInUnix = block.timestamp +
(_harvestIntervalInMinutes *60); //*60 to convert from minutes to second.

uint256 _farmStartTimestampInUnix = block.timestamp +
(_farmStartIntervalInMinutes *60);

massUpdatePools();
totalAllocPoint =

totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
poolInfo[_pid].allocPoint = _allocPoint;
poolInfo[_pid].harvestTimestamp = _harvestTimestampInUnix;
poolInfo[_pid].farmStartDate = _farmStartTimestampInUnix;
emit PoolSet(_pid,_allocPoint,_harvestTimestampInUnix,

_farmStartTimestampInUnix);
}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 20

Public

5.4. Centralized Control of State Variable

ID IDX-004

Target MasterChef

Category General Smart Contract Vulnerability

CWE CWE-710: Improper Adherence to Coding Standard

Risk Severity: Medium

Impact: Medium
The controlling authorities can change the critical state variables to gain additional profit.
Thus, it is unfair to the other users.

Likelihood: Medium
These functions can only be called by the contract owner; however, there is nothing to
restrict the changes from being done by the owner.

Status Resolved
LuckyLion team has resolved this issue by implementing a timelock mechanism. The
MasterChef contract is owned by the Timelock contract with 7 days delay and 2 days
minimum delay.

Timelock contract with 2 days minimum delay:
https://bscscan.com/address/0x4b6c8959a41475347226d51f37ec9a1e09f39a92#code

MasterChef contract:
https://bscscan.com/address/0xb6fe67c8a28d50c50f65fdb5847ee4477c550568#code

Ownership transfer of MasterChef to Timelock contract:
https://bscscan.com/tx/0xb54a48f780f6912f283b0113dfbb9fbef4d0f9e421bc532bb9c41a4
3cc15140f#eventlog

Platform users should monitor the execution of functions in the timelock and act
accordingly.

5.4.1. Description
Critical state variables can be updated any time by the controlling authorities. Changes in these variables can
cause impacts to the users, so the users should accept or be notified before these changes are effective.

However, as the contract is not yet deployed, there is potentially no constraint to prevent the authorities
from modifying these variables without notifying the users.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 21

https://bscscan.com/address/0x4b6c8959a41475347226d51f37ec9a1e09f39a92#code
https://bscscan.com/address/0xb6fe67c8a28d50c50f65fdb5847ee4477c550568#code
https://bscscan.com/tx/0xb54a48f780f6912f283b0113dfbb9fbef4d0f9e421bc532bb9c41a43cc15140f#eventlog
https://bscscan.com/tx/0xb54a48f780f6912f283b0113dfbb9fbef4d0f9e421bc532bb9c41a43cc15140f#eventlog

Public

The controllable privileged state update functions are as follows:

File Contract Function Modifier

Masterchef.sol (L:128) MasterChef add() onlyOwner

Masterchef.sol (L:148) MasterChef set() onlyOwner

Masterchef.sol (L:196) MasterChef setMigrator() onlyOwner

Masterchef.sol (L:363) MasterChef setDevAddress() onlyOwner

Masterchef.sol (L:369) MasterChef updateLuckyPerBlock() onlyOwner

Ownable.sol (L:53) MasterChef renounceOwnership() onlyOwner

Ownable.sol (L:61) MasterChef transferOwnership() onlyOwner

Please note that the Ownable contract is inherited from the OpenZeppelin's library.

5.4.2. Remediation
In the ideal case, the critical state variables should not be modifiable to keep the integrity of the smart
contract. However, if modifications are needed, Inspex suggests limiting the use of these functions via the
following options:

- Implementing a community-run governance to control the use of these functions
- Using a Timelock contract to delay the changes for a sufficient amount of time

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 22

Public

5.5. Design Flaw in massUpdatePools() Function

ID IDX-005

Target MasterChef

Category General Smart Contract Vulnerability

CWE CWE-400: Uncontrolled Resource Consumption

Risk Severity: Low

Impact: Medium
The massUpdatePools() function will eventually be unusable due to excessive gas usage.

Likelihood: Low
It is very unlikely that the poolInfo size will be raised until the massUpdatePools()
function is unusable.

Status Acknowledged
​​LuckyLion team has acknowledged this issue. The team has prepared a testing process on
the local network (environment with the same settings as the main network) which has
the same number of pools as the mainnet, so this problem can be proactively prevented.

5.5.1. Description
The massUpdatePools() function executes the updatePool() function, which is a state modifying function
for all added pools as shown below:

Masterchef.sol

189
190
191
192
193
194

function massUpdatePools() public {
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {

updatePool(pid);
}

}

With the current design, the added pools cannot be removed. They can only be disabled by setting the
pool.allocPoint to 0. Even if a pool is disabled, the updatePool() function for this pool is still called.
Therefore, if new pools continue to be added to this contract, the poolInfo.length will continue to grow
and this function will eventually be unusable due to excessive gas usage.

5.5.2. Remediation
Inspex suggests making the contract capable of removing unnecessary or ended pools to reduce the loop
round in the massUpdatePools() function.

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 23

Public

5.6. Insufficient Logging for Privileged Functions

ID IDX-006

Target MasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-778: Insufficient Logging

Risk Severity: Very Low

Impact: Low
Privileged functions' executions cannot be monitored easily by the users.

Likelihood: Low
It is not likely that the execution of the privileged functions will be a malicious action.

Status Resolved
LuckyLion team has resolved this issue as suggested in commit
5aa5780d15ce4b471d49abb3cba09ac7203975f2.

5.6.1. Description
Privileged functions that are executable by the controlling parties are not logged properly by emitting events.
Without events, it is not easy for the public to monitor the execution of those privileged functions, allowing
the controlling parties to perform actions that cause big impacts on the platform.

For example, the owner can modify the migrator address by executing setMigrator() function in the
MasterChef contract, and no event is emitted.

Masterchef.sol

363
364
365

function setMigrator(IMigratorChef _migrator) public onlyOwner {
migrator = _migrator;

}

The privileged functions without sufficient logging are as follows:

File Contract Function Modifier

Masterchef.sol (L:196) MasterChef setMigrator() onlyOwner

Masterchef.sol (L:363) MasterChef setDevAddress() onlyOwner

5.6.2. Remediation
Inspex suggests emitting events for the execution of privileged functions, for example:

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 24

Public

Masterchef.sol

363
364
365
366
367

event SetMigrator(IMigratorChef _oldmigrator, IMigratorChef _migrator);
function setMigrator(IMigratorChef _migrator) public onlyOwner {

emit SetMigrator(migrator, _migrator);
migrator = _migrator;

}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 25

Public

5.7. Unsupported Design for Deflationary Token

ID IDX-007

Target MasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: Info

Impact: None

Likelihood: None

Status Resolved
LuckyLion team has resolved this issue as suggested in commit
5aa5780d15ce4b471d49abb3cba09ac7203975f2.

5.7.1. Description
In MasterChef contract, the users can deposit their tokens to acquire rewards ($LUCKY). The deposited
tokens can be a normal token or LP token depending on the pools added by the contract owner.

However, in the deposit() function, an issue could arise when the pool uses a deflationary token (the token
that reduces the circulating supply itself when it is transferred).

This means the _amount that the user deposits will be reduced due to the deflationary mechanism, but the
contract recognizes it as the full amount as in line 299.

Masterchef.sol

287
288
289
290

291
292
293

294
295
296
297
298

299

function deposit(uint256 _pid, uint256 _amount) public nonReentrant {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
require(pool.farmStartDate <= block.timestamp,"unable to deposit before the

farm starts.");
//can not harvest(deposit 0) before the harvestTimestamp.
if (!canHarvest(_pid) && _amount==0){

require(pool.harvestTimestamp <= block.timestamp,"can not harvest
before the harvestTimestamp"); //newly added

}
updatePool(_pid);
payOrLockupPendingLucky(_pid);
if (_amount > 0) {

pool.lpToken.safeTransferFrom(address(msg.sender), address(this),
_amount);

user.amount = user.amount.add(_amount);

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 26

Public

300
301
302
303

}
user.rewardDebt = user.amount.mul(pool.accLuckyPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount);

}

The failure of recognizing the token amount could lead to the following scenarios:

Scenario 1: Unable to withdraw staking tokens

Assuming that there is a pool in the MasterChef contract which receives a deflationary token ($TOKEN) with
10% burn rate when the token is transferred.

Currently, there is only User A who stakes $TOKEN to the $TOKEN pool in the MasterChef contract.

Holder Balance

User A 100

Total $TOKEN in the MasterChef contract: 90

User B deposits 100 $TOKEN to the $TOKEN pool in the MasterChef contract. The MasterChef contract will
receive 90 $TOKEN since $TOKEN is 10% deduction from the deflationary mechanism, in this case 10
$TOKEN.

Holder Balance

User A 100

User B 100

Total $TOKEN in the MasterChef contract: 180

User B then withdraws 100 $TOKEN from the MasterChef contract. The MasterChef contract will validate
whether the withdrawn _amount exceeds the user.amount.

Masterchef.sol

306
307
308
309
310
311
312
313
314
315

function withdraw(uint256 _pid, uint256 _amount) public nonReentrant {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
require(user.amount >= _amount, "withdraw: not good");
updatePool(_pid);
payOrLockupPendingLucky(_pid);
if (_amount > 0) {

user.amount = user.amount.sub(_amount);
pool.lpToken.safeTransfer(address(msg.sender), _amount);

}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 27

Public

316
317
318

user.rewardDebt = user.amount.mul(pool.accLuckyPerShare).div(1e12);
emit Withdraw(msg.sender, _pid, _amount);

}

Since User B deposited 100 $TOKEN and the balance of $TOKEN in the contract is greater than 100, User B is
allowed to withdraw 100 $TOKEN.

Holder Balance

User A 100

User B 0

Total $TOKEN in the MasterChef contract: 80

As a result, if User A decides to withdraw 100 $TOKEN, this transaction will be reverted since the balance in
the contract is insufficient.

Scenario 2: Reward Calculation Exploit

Assuming that there is a pool in the MasterChef contract which receives a deflationary token ($TOKEN) with
10% burn rate when the token is transferred.

Currently, there are several users who stake $TOKEN to the $TOKEN pool in the MasterChef contract with a
total supply of 100 $TOKEN.

User A deposits 100 $TOKEN to the contract, and the contract receives 90 $TOKEN due to the deflationary
mechanism, resulting in a total supply of 190 $TOKEN.

After that, User A withdraws 100 $TOKEN from staking, the MasterChef contract will then calculate the
rewards as in line 337.

Masterchef.sol

333
334
335
336
337

338
339
340
341
342
343

function payOrLockupPendingLucky(uint256 _pid) internal {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];

uint256 pending =
user.amount.mul(pool.accLuckyPerShare).div(1e12).sub(user.rewardDebt);

if (canHarvest(_pid)) {
if (pending > 0 || user.rewardLockedUp > 0) {

uint256 totalRewards = pending.add(user.rewardLockedUp);

// reset lockup
totalLockedUpRewards =

totalLockedUpRewards.sub(user.rewardLockedUp);

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 28

Public

344
345
346
347
348
349
350
351
352
353
354
355

user.rewardLockedUp = 0;

// send rewards
safeLuckyTransfer(msg.sender, totalRewards);
emit RewardPaid(msg.sender,totalRewards);

}
} else if (pending > 0) {

user.rewardLockedUp = user.rewardLockedUp.add(pending);
totalLockedUpRewards = totalLockedUpRewards.add(pending);
emit RewardLockedUp(msg.sender, _pid, pending);

}
}

During the calculation, the reward is affected by the total amount of $TOKEN (lpSupply) as in line 218.

Masterchef.sol

213
214
215
216
217
218
219
220
221
222
223
224

225
226

227
228
229

230
231
232
233
234

235
236

237
238

function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
if (block.number <= pool.lastRewardBlock) {

return;
}
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (lpSupply == 0 || pool.allocPoint == 0) {

pool.lastRewardBlock = block.number;
return;

}
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 luckyReward =

multiplier.mul(luckyPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
//new one
// check at final to mint exact lucky to complete the round 9 million and

100 millions totalsupply
uint256 luckyRewardForDev = luckyReward.mul(devMintingRatio).div(10000);
//logic to prevent the minting exceeds the capped totalsupply
//1st case, reward for dev will exceed Lucky's totalSupply so we limit the

minting amount to syrup.
if (luckyRewardForDev.add(lucky.totalSupply()) > lucky.cap()) {

uint256 remainingReward = lucky.cap().sub(lucky.totalSupply());
//in case that remainingReward > capped reward for dev.
if (remainingReward.add(accumulatedRewardForDev) > capRewardForDev) {

uint256 lastRemainingRewardForDev =
capRewardForDev.sub(accumulatedRewardForDev);

lucky.mint(devAddress,lastRemainingRewardForDev);
accumulatedRewardForDev =

accumulatedRewardForDev.add(lastRemainingRewardForDev);
//the rest is minted to users.
lucky.mint(address(syrup),lucky.cap().sub(lucky.totalSupply()));

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 29

Public

239
240

241
242
243
244

245
246
247
248

249
250
251
252

253
254
255

256
257
258

259
260
261

262
263
264
265
266
267
268
269
270
271

272
273
274

275
276

}
//normal case that dev's caped reward has not been reached yet, but the

totalSupply of Lucky is reached.
else {

lucky.mint(devAddress, remainingReward);
//track the token that is minted to dev.
accumulatedRewardForDev =

accumulatedRewardForDev.add(remainingReward);
}

}
//supply cap was not reached and capRewardForDevev still has room to mint

for.
else {

//capRewardForDev is reached.
if (luckyRewardForDev.add(accumulatedRewardForDev) > capRewardForDev) {

uint256 lastRemainingRewardForDev =
capRewardForDev.sub(accumulatedRewardForDev);

lucky.mint(devAddress,lastRemainingRewardForDev);
//track the token that is minted to dev.
accumulatedRewardForDev =

accumulatedRewardForDev.add(lastRemainingRewardForDev);

//mint the left portion of dev to the pools.
lucky.mint(address(syrup),luckyRewardForDev

.sub(lastRemainingRewardForDev));

if (luckyReward.add(lucky.totalSupply()) > lucky.cap()){
lucky.mint(address(syrup),lucky.cap()

.sub(lucky.totalSupply()));
}
else {

lucky.mint(address(syrup),luckyReward);
}

}

else {

lucky.mint(devAddress,luckyRewardForDev);
accumulatedRewardForDev =

accumulatedRewardForDev.add(luckyRewardForDev);

if (luckyReward.add(lucky.totalSupply()) > lucky.cap()){
lucky.mint(address(syrup),lucky.cap()

.sub(lucky.totalSupply()));
}
else{

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 30

Public

277
278
279
280
281
282

283
284

lucky.mint(address(syrup),luckyReward);
}

}
}
pool.accLuckyPerShare =

pool.accLuckyPerShare.add(luckyReward.mul(1e12).div(lpSupply));
pool.lastRewardBlock = block.number;

}

Since the MasterChef contract registers the user.amount of User A as 100 $TOKEN, the withdrawn $TOKEN
amount will be 100, resulting in reducing the total amount of $TOKEN in the contract to 90 $TOKEN.

Hence, the value of pool.accLuckyPerShare can be increased dramatically by manipulating the total
amount of $TOKEN (lpSupply) to be as low as possible.

User A can repeatedly execute withdraw() and deposit() functions to drain the $TOKEN in the contract
until it is as low as possible, for example, 1 wei, causing accLuckyPerShare state to be overly inflated, so the
users can claim an exceedingly large amount of reward ($LUCK) from the contract.

However, since only LP tokens are planned to be used in MasterChef pools, there is no direct impact for this
issue.

5.7.2. Remediation
Inspex suggests modifying the logic of the deposit() function to validate the amount of the received token
from the user instead of using the value of _amount parameter directly.

Masterchef.sol

287
288
289
290

291
292
293

294
295
296
297
298
299

300

function deposit(uint256 _pid, uint256 _amount) public nonReentrant {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
require(pool.farmStartDate <= block.timestamp,"unable to deposit before the

farm starts.");
//can not harvest(deposit 0) before the harvestTimestamp.
if (!canHarvest(_pid) && _amount==0){

require(pool.harvestTimestamp <= block.timestamp,"can not harvest
before the harvestTimestamp"); //newly added

}
updatePool(_pid);
payOrLockupPendingLucky(_pid);
if (_amount > 0) {

uint256 currentBal = pool.lpToken.balanceOf(address(this));
pool.lpToken.safeTransferFrom(address(msg.sender), address(this),

_amount);
uint256 receivedAmount = pool.lpToken.balanceOf(address(this)) -

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 31

Public

301
302
303
304
305

currentBal;
user.amount = user.amount.add(receivedAmount);

}
user.rewardDebt = user.amount.mul(pool.accLuckyPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount);

}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 32

Public

5.8. Improper Function Visibility

ID IDX-008

Target Masterchef
SyrupBar

Category Smart Contract Best Practice

CWE CWE-710: Improper Adherence to Coding Standards

Risk Severity: Info

Impact: None

Likelihood: None

Status Resolved
LuckyLion team has resolved this issue as suggested in commit
5aa5780d15ce4b471d49abb3cba09ac7203975f2.

5.8.1. Description
Functions with public visibility copy calldata to memory when being executed, while external functions can
read directly from calldata. Memory allocation uses more resources (gas) than reading directly from calldata.

For example, the following source code shows that the add() function of the MasterChef contract is set to
public and it is never called from any internal function.

Masterchef.sol

128

129

130

131
132
133
134

135
136
137
138
139
140

function add(uint256 _allocPoint, IERC20 _lpToken, uint256
_harvestIntervalInMinutes,uint256 _farmStartIntervalInMinutes, bool
_withUpdate) public onlyOwner {

uint256 _harvestTimestampInUnix = block.timestamp +
(_harvestIntervalInMinutes *60); //*60 to convert from minutes to second.

uint256 _farmStartTimestampInUnix = block.timestamp +
(_farmStartIntervalInMinutes *60);

if (_withUpdate) {
massUpdatePools();

}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({

lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accLuckyPerShare: 0,

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 33

Public

141
142
143
144

145

harvestTimestamp: _harvestTimestampInUnix,
farmStartDate : _farmStartTimestampInUnix

}));
emit PoolAdded(_lpToken,_allocPoint,_harvestTimestampInUnix,

_farmStartTimestampInUnix);
}

The following table contains all functions that have public visibility and are never called from any internal
function.

File Contract Function

Masterchef.sol (L:148) MasterChef set()

Masterchef.sol (L:196) MasterChef setMigrator()

Masterchef.sol (L:201) MasterChef migrate()

Masterchef.sol (L:287) MasterChef deposit()

Masterchef.sol (L:306) MasterChef withdraw()

Masterchef.sol (L:321) MasterChef emergencyWithdraw()

Masterchef.sol (L:363) MasterChef setDevAddress()

Masterchef.sol (L:360) MasterChef updateLuckyPerBlock()

SyrupBar.sol (L:22) SyrupBar safeLuckyTransfer()

5.8.2. Remediation
Inspex suggests changing all functions' visibility to external if they are not called from any internal
function as shown in the following example:

Masterchef.sol

128

129

130

131
132
133
134

function add(uint256 _allocPoint, IERC20 _lpToken, uint256
_harvestIntervalInMinutes,uint256 _farmStartIntervalInMinutes, bool
_withUpdate) external onlyOwner {

uint256 _harvestTimestampInUnix = block.timestamp +
(_harvestIntervalInMinutes *60); //*60 to convert from minutes to second.

uint256 _farmStartTimestampInUnix = block.timestamp +
(_farmStartIntervalInMinutes *60);

if (_withUpdate) {
massUpdatePools();

}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 34

Public

135
136
137
138
139
140
141
142
143
144

145

totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({

lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accLuckyPerShare: 0,
harvestTimestamp: _harvestTimestampInUnix,
farmStartDate : _farmStartTimestampInUnix

}));
emit PoolAdded(_lpToken,_allocPoint,_harvestTimestampInUnix,

_farmStartTimestampInUnix);
}

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 35

Public

6. Appendix

6.1. About Inspex

Inspex is formed by a team of cybersecurity experts highly experienced in various fields of cybersecurity. We
provide blockchain and smart contract professional services at the highest quality to enhance the security of
our clients and the overall blockchain ecosystem.

Follow Us On:

Website https://inspex.co

Twitter @InspexCo

Facebook https://www.facebook.com/InspexCo

Telegram @inspex_announcement

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 36

https://inspex.co
https://twitter.com/InspexCo
https://www.facebook.com/InspexCo
https://t.me/inspex_announcement

Public

6.2. References

[1] “OWASP Risk Rating Methodology.” [Online]. Available:
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology. [Accessed: 08-May-2021]

Inspex Smart Contract Audit Report: AUDIT2021024 (v1.0) 37

http://paperpile.com/b/Q1frcv/hzD0z
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
http://paperpile.com/b/Q1frcv/hzD0z

