
Token & MasterChef
Smart Contract Audit Report
Prepared for SamoyedFinance

Date Issued: Sep 21, 2021
Project ID: AUDIT2021020
Version: v1.0
Confidentiality Level: Public

Public

Report Information

Project ID AUDIT2021020

Version v1.0

Client SamoyedFinance

Project Token & MasterChef

Auditor(s) Suvicha Buakhom
Patipon Suwanbol

Author Suvicha Buakhom

Reviewer Weerawat Pawanawiwat

Confidentiality Level Public

Version History

Version Date Description Author(s)

1.0 Sep 21, 2021 Full report Suvicha Buakhom

Contact Information

Company Inspex

Phone (+66) 90 888 7186

Telegram t.me/inspexco

Email audit@inspex.co

https://t.me/inspexco
mailto:audit@inspex.co

Public

Table of Contents
1. Executive Summary 1

1.1. Audit Result 1
1.2. Disclaimer 1

2. Project Overview 2
2.1. Project Introduction 2
2.2. Scope 3

3. Methodology 4
3.1. Test Categories 4
3.2. Audit Items 5
3.3. Risk Rating 6

4. Summary of Findings 7

5. Detailed Findings Information 9
5.1. Improper Delegation Handling 9
5.2. Improper Reward Calculation (Duplicated LP Token) 13
5.3. Improper Reward Calculation (BONUS_MULTIPLIER) 16
5.4. Improper Reward Calculation (smoyPerBlock) 19
5.5. Improper Reward Calculation (_withUpdate) 21
5.6. Centralized Control of State Variable 25
5.7. Design Flaw in massUpdatePools() Function 27
5.8. Unchecked Deposit Fee Value 29
5.9. Insufficient Logging for Privileged Functions 34
5.10. Unsupported Design for Deflationary Token 36
5.11. Improper Function Visibility 41

6. Appendix 43
6.1. About Inspex 43
6.2. References 44

Public

1. Executive Summary
As requested by SamoyedFinance, Inspex team conducted an audit to verify the security posture of the
Token & MasterChef smart contracts between Sep 7, 2021 and Sep 8, 2021. During the audit, Inspex team
examined all smart contracts and the overall operation within the scope to understand the overview of
Token & MasterChef smart contracts. Static code analysis, dynamic analysis, and manual review were done
in conjunction to identify smart contract vulnerabilities together with technical & business logic flaws that
may be exposed to the potential risk of the platform and the ecosystem. Practical recommendations are
provided according to each vulnerability found and should be followed to remediate the issue.

1.1. Audit Result
In the initial audit, Inspex found 1 high, 5 medium, 2 low, 1 very low, and 2 info-severity issues. With the
project team’s prompt response, 1 high, 5 medium, 2 low, 1 very low, and 1 info-severity issues were resolved
or mitigated in the reassessment, while 1 info-severity issue was acknowledged by the team. Therefore,
Inspex trusts that Token & MasterChef smart contracts have sufficient protections to be safe for public use.

1.2. Disclaimer
This security audit is not produced to supplant any other type of assessment and does not guarantee the
discovery of all security vulnerabilities within the scope of the assessment. However, we warrant that this
audit is conducted with goodwill, professional approach, and competence. Since an assessment from one
single party cannot be confirmed to cover all possible issues within the smart contract(s), Inspex suggests
conducting multiple independent assessments to minimize the risks. Lastly, nothing contained in this audit
report should be considered as investment advice.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 1

Public

2. Project Overview

2.1. Project Introduction
SamoyedFinance is an NFT lottery, gaming and yield farming platform which gives the users unlimited
chances to win prizes. The users can win never-ending jackpots, play games, and exchange NFT all in one
platform.

Token & MasterChef smart contracts are the main contracts responsible for distributing $SMOY on the
platform. The users can deposit tokens to the pools added to the MasterChef contract and earn $SMOY as a
reward.

Scope Information:

Project Name Token & MasterChef

Website https://samoyedfinance.app/farm

Smart Contract Type Ethereum Smart Contract

Chain Binance Smart Chain

Programming Language Solidity

Audit Information:

Audit Method Whitebox

Audit Date Sep 7, 2021 - Sep 8, 2021

Reassessment Date Sep 20, 2021

The audit method can be categorized into two types depending on the assessment targets provided:

1. Whitebox: The complete source code of the smart contracts are provided for the assessment.
2. Blackbox: Only the bytecodes of the smart contracts are provided for the assessment.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 2

https://samoyedfinance.app/farm

Public

2.2. Scope
The following smart contracts were audited and reassessed by Inspex in detail:

Initial Audit:

Contract Location (URL)

SamoyToken https://testnet.bscscan.com/address/0x124B4c3d31aEe6C05176ab18478E3C16
7b078618#code

SamoyedMasterChef https://testnet.bscscan.com/address/0xA650430d3daA62740C3Dd3c0a6f88C39
4f57a93d#code

KennelClub https://testnet.bscscan.com/address/0xb929c08768b507582545303107c7791b6
7f4db00#code

Reassessment:

Contract Location (URL)

SamoyToken https://bscscan.com/address/0xBdb44DF0A914c290DFD84c1eaf5899d285717fd
c#code

SamoyedMasterChef https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e
2a#code

KennelClub https://bscscan.com/address/0x1364e039de60522aef045095823148e5e20f649a
#code

The assessment scope covers only the in-scope smart contracts and the smart contracts that they are
inherited from.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 3

https://testnet.bscscan.com/address/0x124B4c3d31aEe6C05176ab18478E3C167b078618#code
https://testnet.bscscan.com/address/0x124B4c3d31aEe6C05176ab18478E3C167b078618#code
https://testnet.bscscan.com/address/0xA650430d3daA62740C3Dd3c0a6f88C394f57a93d#code
https://testnet.bscscan.com/address/0xA650430d3daA62740C3Dd3c0a6f88C394f57a93d#code
https://testnet.bscscan.com/address/0xb929c08768b507582545303107c7791b67f4db00#code
https://testnet.bscscan.com/address/0xb929c08768b507582545303107c7791b67f4db00#code
https://bscscan.com/address/0xBdb44DF0A914c290DFD84c1eaf5899d285717fdc#code
https://bscscan.com/address/0xBdb44DF0A914c290DFD84c1eaf5899d285717fdc#code
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a#code
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a#code
https://bscscan.com/address/0x1364e039de60522aef045095823148e5e20f649a#code
https://bscscan.com/address/0x1364e039de60522aef045095823148e5e20f649a#code

Public

3. Methodology
Inspex conducts the following procedure to enhance the security level of our clients’ smart contracts:

1. Pre-Auditing: Getting to understand the overall operations of the related smart contracts, checking
for readiness, and preparing for the auditing

2. Auditing: Inspecting the smart contracts using automated analysis tools and manual analysis by a
team of professionals

3. First Deliverable and Consulting: Delivering a preliminary report on the findings with suggestions
on how to remediate those issues and providing consultation

4. Reassessment: Verifying the status of the issues and whether there are any other complications in
the fixes applied

5. Final Deliverable: Providing a full report with the detailed status of each issue

3.1. Test Categories
Inspex smart contract auditing methodology consists of both automated testing with scanning tools and
manual testing by experienced testers. We have categorized the tests into 3 categories as follows:

1. General Smart Contract Vulnerability (General) - Smart contracts are analyzed automatically using
static code analysis tools for general smart contract coding bugs, which are then verified manually to
remove all false positives generated.

2. Advanced Smart Contract Vulnerability (Advanced) - The workflow, logic, and the actual behavior
of the smart contracts are manually analyzed in-depth to determine any flaws that can cause
technical or business damage to the smart contracts or the users of the smart contracts.

3. Smart Contract Best Practice (Best Practice) - The code of smart contracts is then analyzed from
the development perspective, providing suggestions to improve the overall code quality using
standardized best practices.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 4

Public

3.2. Audit Items
The following audit items were checked during the auditing activity.

General

Reentrancy Attack

Integer Overflows and Underflows

Unchecked Return Values for Low-Level Calls

Bad Randomness

Transaction Ordering Dependence

Time Manipulation

Short Address Attack

Outdated Compiler Version

Use of Known Vulnerable Component

Deprecated Solidity Features

Use of Deprecated Component

Loop with High Gas Consumption

Unauthorized Self-destruct

Redundant Fallback Function

Advanced

Business Logic Flaw

Ownership Takeover

Broken Access Control

Broken Authentication

Use of Upgradable Contract Design

Insufficient Logging for Privileged Functions

Improper Kill-Switch Mechanism

Improper Front-end Integration

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 5

Public

Insecure Smart Contract Initiation

Denial of Service

Improper Oracle Usage

Memory Corruption

Best Practice

Use of Variadic Byte Array

Implicit Compiler Version

Implicit Visibility Level

Implicit Type Inference

Function Declaration Inconsistency

Token API Violation

Best Practices Violation

3.3. Risk Rating
OWASP Risk Rating Methodology[1] is used to determine the severity of each issue with the following criteria:

- Likelihood: a measure of how likely this vulnerability is to be uncovered and exploited by an attacker.
- Impact: a measure of the damage caused by a successful attack

Both likelihood and impact can be categorized into three levels: Low, Medium, and High.

Severity is the overall risk of the issue. It can be categorized into five levels: Very Low, Low, Medium, High,
and Critical. It is calculated from the combination of likelihood and impact factors using the matrix below.
The severity of findings with no likelihood or impact would be categorized as Info.

Likelihood
Impact Low Medium High

Low Very Low Low Medium

Medium Low Medium High

High Medium High Critical

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 6

https://paperpile.com/c/Q1frcv/hzD0z

Public

4. Summary of Findings
From the assessments, Inspex has found 11 issues in three categories. The following chart shows the number
of the issues categorized into three categories: General, Advanced, and Best Practice.

The statuses of the issues are defined as follows:

Status Description

Resolved The issue has been resolved and has no further complications.

Resolved * The issue has been resolved with mitigations and clarifications. For the
clarification or mitigation detail, please refer to Chapter 5.

Acknowledged The issue’s risk has been acknowledged and accepted.

No Security Impact The best practice recommendation has been acknowledged.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 7

Public

The information and status of each issue can be found in the following table:

ID Title Category Severity Status

IDX-001 Improper Delegation Handling Advanced High Resolved

IDX-002 Improper Reward Calculation (Duplicated LP
Token)

Advanced Medium Resolved

IDX-003 Improper Reward Calculation
(BONUS_MULTIPLIER)

Advanced Medium Resolved

IDX-004 Improper Reward Calculation (smoyPerBlock) Advanced Medium Resolved

IDX-005 Improper Reward Calculation (_withUpdate) Advanced Medium Resolved

IDX-006 Centralized Control of State Variable General Medium Resolved

IDX-007 Design Flaw in massUpdatePools() Function General Low Resolved *

IDX-008 Unlimit Deposit Fee Advanced Low Resolved

IDX-009 Insufficient Logging for Privileged Functions Advanced Very Low Resolved

IDX-010 Unsupported Design for Deflationary Token Advanced Info Resolved

IDX-011 Improper Function Visibility Best Practice Info No Security
Impact

* The mitigations or clarifications by SamoyedFinance can be found in Chapter 5.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 8

Public

5. Detailed Findings Information

5.1. Improper Delegation Handling

ID IDX-001

Target KennelClub

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: High

Impact: Medium
The number of votes can be manipulated, causing the result of voting to be unfair and
untrustworthy.

Likelihood: High
Manipulating the vote result gives advantages to the abusers. This motivates anyone to
exploit this scenario since there is no mechanism to prevent it.

Status Resolved
SamoyedFinance team has resolved this issue by removing the delegation feature in the
deployed contract on mainnet.

KennelClub contract:
https://bscscan.com/address/0x1364e039de60522aef045095823148e5e20f649a

5.1.1. Description
In the KennelClub contract, there is a voting mechanism implemented, allowing the users (Delegators) to
delegate their votes to another address (Delegatees) without transferring their tokens.

The users can delegate their votes to another address using the delegate() function, which calls the
_delegate() function.

KennelClub.sol

87
88
89

function delegate(address delegatee) external {
return _delegate(msg.sender, delegatee);

}

The _delegate() function sets the delegatee of the address in line 177, and transfer the number of votes
from the old delegatee to the new delegatee with the current token balance of the delegator by using the
_moveDelegates() function as in line 181.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 9

https://bscscan.com/address/0x1364e039de60522aef045095823148e5e20f649a

Public

KennelClub.sol

174
175
176

177
178
179
180
181
182

function _delegate(address delegator, address delegatee) internal {
address currentDelegate = _delegates[delegator];
uint256 delegatorBalance = balanceOf(delegator); // balance of underlying

CAKEs (not scaled);
_delegates[delegator] = delegatee;

emit DelegateChanged(delegator, currentDelegate, delegatee);

_moveDelegates(currentDelegate, delegatee, delegatorBalance);
}

The _moveDelegates() function calculates the new amounts of votes for the delegatees.

KennelClub.sol

184
185
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201

202
203
204
205
206

function _moveDelegates(
address srcRep,
address dstRep,
uint256 amount

) internal {
if (srcRep != dstRep && amount > 0) {

if (srcRep != address(0)) {
// decrease old representative
uint32 srcRepNum = numCheckpoints[srcRep];
uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum -

1].votes : 0;
uint256 srcRepNew = srcRepOld.sub(amount);
_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);

}

if (dstRep != address(0)) {
// increase new representative
uint32 dstRepNum = numCheckpoints[dstRep];
uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum -

1].votes : 0;
uint256 dstRepNew = dstRepOld.add(amount);
_writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);

}
}

}

However, the delegate mechanism will only activate when the delegator calls the delegate() function. This
means $KENNEL could be transferred to another person after the first delegation, and that person can call
the delegate() function again, allowing $KENNEL to be used for double spending attack in an aspect of
voting mechanism, for example:

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 10

Public

The total of $KENNEL and votes of each user in this scenario is represented in the table below:

User $KENNEL Vote

A 100 100

B 0 0

C 0 0

User A delegates 100 votes to User B, now User B has 100 votes.

User $KENNEL Vote

A 100 0

B 0 100

C 0 0

User A transfers 100 $KENNEL to User C, now User C has 100 $KENNEL

User $KENNEL Vote

A 0 0

B 0 100

C 100 100

User C delegates 100 Votes to User B, now Use B has 200 votes.

User $KENNEL Vote

A 0 0

B 0 200

C 100 0

This process can be done repeatedly to increase the voting power without any limit.

5.1.2. Remediation
Inspex suggests that the delegation vote should be transferred from the previous delegatee to the new
delegatee when the token transfer occurs.

Since the KennelClub contract is implemented by following the ERC20 standard, inserting the
_moveDelegates function to the transfer() and transferFrom() functions will solve this issue.
Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 11

Public

KennelClub.sol

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20

function transfer(address recipient, uint256 amount) external override
nonReentrant returns (bool) {

_transfer(_msgSender(), recipient, amount);
_moveDelegates(_delegates[msgSender()], _delegates[recipient], amount);
return true;

}

function transferFrom(
address sender,
address recipient,
uint256 amount

) external override nonReentrant returns (bool) {
_transfer(sender, recipient, amount);
_approve(

sender,
_msgSender(),
_allowances[sender][_msgSender()].sub(amount, "BEP20: transfer amount

exceeds allowance")
);
_moveDelegates(_delegates[sender], _delegates[recipient], amount);
return true;

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 12

Public

5.2. Improper Reward Calculation (Duplicated LP Token)

ID IDX-002

Target SamoyedMasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: Medium

Impact: Medium
The $SMOY reward miscalculation can lead to an unfair $SMOY token distribution to the
users.

Likelihood: Medium
It is possible that the contract owner will add a new pool that uses the same token as
other pool since there is no restriction.

Status Resolved
SamoyedFinance team has resolved this issue as suggested in the deployed contract on
mainnet.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

5.2.1. Description
In the SamoyedMasterChef contract, a new staking pool can be added using the add() function. The staking
token for the new pool is defined using the _lpToken variable; however, there is no additional checking
whether the _lpToken is already used in other pools or not.

SamoyedMasterChef.sol

110
111
112
113
114
115
116
117
118
119
120

121
122

function add(
uint256 _allocPoint,
IBEP20 _lpToken,
bool _withUpdate,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
if (_withUpdate) {

massUpdatePools();
}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 13

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Public

123
124
125
126
127
128
129
130
131
132

PoolInfo({
lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accSmoyPerShare: 0,
minDepositFeeRate: _minDepositFeeRate,
maxDepositFeeRate: _maxDepositFeeRate

})
);

}

In the updatePool() function, the balance of pool.lpToken in the contract is used as a denominator to
calculate pool.accSmoyPerShare.

SamoyedMasterChef.sol

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15

16
17

function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
if (block.number <= pool.lastRewardBlock) {

return;
}
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (lpSupply == 0) {

pool.lastRewardBlock = block.number;
return;

}
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 smoyReward =

multiplier.mul(smoyPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
smoy.mintTo(devAddr, smoyReward.div(10));
smoy.mintTo(address(kennel), smoyReward);
pool.accSmoyPerShare =

pool.accSmoyPerShare.add(smoyReward.mul(1e12).div(lpSupply));
pool.lastRewardBlock = block.number;

}

When the owner of SamoyedMasterChef adds a pool with the same lpToken as another pool, the lpToken
value is counted from all pools using the same lpToken, resulting in a higher value of denominator
(lpSupply) than it should be.

5.2.2. Remediation
Inspex suggests validating the _lpToken address in add() function to prevent duplicated _lpToken when
adding a new pool as shown in the following example:

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 14

Public

SamoyedMasterChef.sol

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138

mapping(address => bool) public isAddedPool;

function add(
uint256 _allocPoint,
IBEP20 _lpToken,
bool _withUpdate,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
require(!isAddedPool[address(_lpToken)], "Duplicated LP Token");

if (_withUpdate) {
massUpdatePools();

}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(

PoolInfo({
lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accSmoyPerShare: 0,
minDepositFeeRate: _minDepositFeeRate,
maxDepositFeeRate: _maxDepositFeeRate

})
);

isAddedPool[address(_lpToken)] = true;
}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 15

Public

5.3. Improper Reward Calculation (BONUS_MULTIPLIER)

ID IDX-003

Target SamoyedMasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: Medium

Impact: Medium
The $SMOY reward miscalculation can lead to an unfair $SMOY distribution to the users.

Likelihood: Medium
The bonus multiplier can only be updated by the contract owner, but it is likely that this
value will be updated.

Status Resolved
SamoyedFinance team has resolved this issue as suggested in the deployed contract on
mainnet.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

5.3.1. Description
The BONUS_MULTIPLIER state variable is used as a factor to calculate the reward in getMultiplier()
function.

SamoyedMasterChef.sol

155

156
157

function getMultiplier(uint256 _from, uint256 _to) public view returns
(uint256) {

return _to.sub(_from).mul(BONUS_MULTIPLIER);
}

In order to mint the reward to the users who deposited, the updatePool() function is executed, calling the
getMultiplier() function to calculate the reward, and recording the users' reward in the
accSmoyPerShare state variable.

SamoyedMasterChef.sol

182
183
184
185
186

function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
if (block.number <= pool.lastRewardBlock) {

return;
}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 16

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Public

187
188
189
190
191
192
193

194
195
196

197
198

uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (lpSupply == 0) {

pool.lastRewardBlock = block.number;
return;

}
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 smoyReward =

multiplier.mul(smoyPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
smoy.mintTo(devAddr, smoyReward.div(10));
smoy.mintTo(address(kennel), smoyReward);
pool.accSmoyPerShare =

pool.accSmoyPerShare.add(smoyReward.mul(1e12).div(lpSupply));
pool.lastRewardBlock = block.number;

}

However, the SamoyedMasterChef contract owner can change the BONUS_MULTIPLIER by using the
updateMultiplier() function.

SamoyedMasterChef.sol

100
101
102

function updateMultiplier(uint256 multiplierNumber) external onlyOwner {
BONUS_MULTIPLIER = multiplierNumber;

}

Therefore, whenever the BONUS_MULTIPLIER variable is modified without updating the pending reward first,
the reward of each pool will be incorrectly calculated.

For example:

Assuming that BONUS_MULTIPLIER is originally set to 1 and smoyPerBlock is set to 10.

Block Action

1000000 All pools’ rewards are updated.

1100000 BONUS_MULTIPLIER is updated to 5

1200000 The pools’ rewards are updated once again.

The total rewards minted during block 1000000 to block 1200000 is equal to 5 * 10 $SMOY per block, from
block 1000000 to block 1200000 (50 x (1200000 - 1000000) = 10,000,000 $SMOY).

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 17

Public

However, the rewards should be calculated by accounting for the original BONUS_MULTIPLIER value during
the period when it is not yet updated as follows:

- BONUS_MULTIPLIER is set to 1, from block 1000000 to block 1100000 (10 * 1 * (1100000 - 1000000) =
1,000,000 $SMOY)

- BONUS_MULTIPLIER is set to 5, from block 1100000 to block 1200000 (10 * 5 * (1200000 - 1100000) =
5,000,000 $SMOY)

- Total $SMOY minted (1,000,000 + 5,000,000 = 6,000,000 $SMOY)

5.3.2. Remediation
Inspex suggests adding massUpdatePools() function calling before updating BONUS_MULTIPLIER variable
as shown in the following example:

SamoyedMasterChef.sol

100
101
102
103

function updateMultiplier(uint256 multiplierNumber) external onlyOwner {
massUpdatePool();
BONUS_MULTIPLIER = multiplierNumber;

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 18

Public

5.4. Improper Reward Calculation (smoyPerBlock)

ID IDX-004

Target SamoyedMasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: Medium

Impact: Medium
The $SMOY reward miscalculation can lead to an unfair $SMOY token distribution to the
users.

Likelihood: Medium
The smoyPerBLock can only be changed by the contract owner, but it is likely that this
value will be updated.

Status Resolved
SamoyedFinance team has resolved this issue as suggested in the deployed contract on
mainnet.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

5.4.1. Description
The smoyPerBlock variable is used to determine the total number of $SMOY to be minted as a reward per
block, so it is one of the main factors used in the rewards calculation. Therefore, whenever the
smoyPerBlock variable is modified without updating the pending reward first, the reward of each pool will
be incorrectly calculated.

In the updateSmoyPerBlock() function shown below, the smoyPerBlock variable is modified without
updating the reward.

SamoyedMasterChef.sol

333
334
335

function updateSmoyPerBlock(uint256 _smoyPerBlock) external onlyOwner {
smoyPerBlock = _smoyPerBlock;

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 19

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Public

For example:

Assuming that smoyPerBlock is originally set to 15 $SMOY per block.

Block Action

1000000 All pools’ rewards are updated.

1100000 smoyPerblock is updated to 20 $SMOY per block using updateSmoyPerBlock() function.

1200000 The pools’ rewards are updated once again.

The total rewards minted during block 1000000 to block 1200000 is equal to 20 $SMOY per block, from block
1000000 to block 1000000 (20 x (1200000 - 1000000) = 4,000,000 $SMOY).

However, the rewards should be calculated by accounting for the original smoyPerBlock value during the
period when it is not yet updated as follows:

- 15 $SMOY per block, from block 1000000 to block 1100000 (15 * (1100000 - 1000000) = 1,500,000
$SMOY)

- 20 $SMOY per block, from block 1100000 to block 1200000 (20 * (1200000 - 1100000) = 2,000,000
$SMOY)

- Total $SMOY minted (1,500,000 + 2,000,000 = 3,500,000 $SMOY)

5.4.2. Remediation
Inspex suggests adding massUpdatePools() function calling before updating the smoyPerBlock variable as
shown in the following example:

SamoyedMasterChef.sol

333
334
335
336

function updateSmoyPerBlock(uint256 _smoyPerBlock) external onlyOwner {
massUpdatePool();
smoyPerBlock = _smoyPerBlock;

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 20

Public

5.5. Improper Reward Calculation (_withUpdate)

ID IDX-005

Target SamoyedMasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: Medium

Impact: Medium
The $SMOY reward miscalculation can lead to an unfair $SMOY token distribution to the
users.

Likelihood: Medium
The add() and the set() functions can only be called by the contract owner, but it is
possible that the totalAllocPoint state will be changed without setting the
_withUpdate parameter to true.

Status Resolved
SamoyedFinance team has resolved this issue as suggested in the deployed contract on
mainnet.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

5.5.1. Description
The totalAllocPoint variable is used to determine the portion that each pool would get from the total
rewards minted, so it is one of the main factors used in the rewards calculation. Therefore, whenever the
totalAllocPoint variable is modified without updating the pending rewards first, the reward of each pool
will be incorrectly calculated.

In the add() and set() functions shown below, if _withUpdate is set to false, the totalAllocPoint
variable will be modified without updating the rewards (massUpdatePools()).

SamoyedMasterChef.sol

110
111
112
113
114
115
116
117
118

function add(
uint256 _allocPoint,
IBEP20 _lpToken,
bool _withUpdate,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
if (_withUpdate) {

massUpdatePools();

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 21

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Public

119
120

121
122
123
124
125
126
127
128
129
130
131
132

}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(

PoolInfo({
lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accSmoyPerShare: 0,
minDepositFeeRate: _minDepositFeeRate,
maxDepositFeeRate: _maxDepositFeeRate

})
);

}

SamoyedMasterChef.sol

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

function set(
uint256 _pid,
uint256 _allocPoint,
bool _withUpdate,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
if (_withUpdate) {

massUpdatePools();
}
uint256 prevAllocPoint = poolInfo[_pid].allocPoint;
poolInfo[_pid].allocPoint = _allocPoint;
poolInfo[_pid].minDepositFeeRate = _minDepositFeeRate;
poolInfo[_pid].maxDepositFeeRate = _maxDepositFeeRate;
if (prevAllocPoint != _allocPoint) {

totalAllocPoint = totalAllocPoint.sub(prevAllocPoint).add(_allocPoint);
}

}

For example:

Assuming that on block 1000000, smoyPerBlock is 5 $SMOY per block, totalAllocPoint is 5000, and
allocPoint of pool id 0 is 500.

Block Action

1000000 All pools’ rewards are updated

1100000 A new pool is added using the add() function, causing the totalAllocPoint to be changed

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 22

Public

from 5000 to 10000

1200000 The pools’ rewards are updated once again.

From current logic, the total rewards allocated to the pool id 0 during block 1000000 to 1200000 is equal to
50,000 $SMOY calculated using the following equation:

Block Total
Reward

Block

Total
Allocation

Point

Total $SMOY per block for pool 0
(smoyPerBlock*pool0allocPoint/

totalAllocPoint)

Total pool 0
$SMOY Reward

1000000 - 1200000 200000 10,000 0.25 $SMOY per block 50,000 $SMOY

However, the rewards should be calculated by accounting for the original totalAllocPoint value during
the period when it is not yet updated as follows:

Block Total
Reward

Block

Total
Allocation

Point

Total $SMOY per block for pool 0
(smoyPerBlock*pool0allocPoint/

totalAllocPoint)

Total pool 0
$SMOY Reward

1000000 - 1100000 100000 5,000 0.5 $SMOY per block 50,000 $SMOY

1100000 - 1200000 100000 10,000 0.25 $SMOY per block 25,000 $SMOY

The correct total $SMOY rewards is 75,000 $SMOY, which is different from the miscalculated reward by 25,000
$SMOY.

5.5.2. Remediation
Inspex suggests removing the _withUpdate variable in the add() and set() functions and always calling
the massUpdatePools() function before updating totalAllocPoint variable as shown in the following
example:

SamoyedMasterChef.sol

110
111
112
113
114
115
116
117

118
119
120

function add(
uint256 _allocPoint,
IBEP20 _lpToken,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
massUpdatePools();
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(

PoolInfo({

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 23

Public

121
122
123
124
125
126
127
128
129

lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accSmoyPerShare: 0,
minDepositFeeRate: _minDepositFeeRate,
maxDepositFeeRate: _maxDepositFeeRate

})
);

}

SamoyedMasterChef.sol

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

function set(
uint256 _pid,
uint256 _allocPoint,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
massUpdatePools();
uint256 prevAllocPoint = poolInfo[_pid].allocPoint;
poolInfo[_pid].allocPoint = _allocPoint;
poolInfo[_pid].minDepositFeeRate = _minDepositFeeRate;
poolInfo[_pid].maxDepositFeeRate = _maxDepositFeeRate;
if (prevAllocPoint != _allocPoint) {

totalAllocPoint = totalAllocPoint.sub(prevAllocPoint).add(_allocPoint);
}

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 24

Public

5.6. Centralized Control of State Variable

ID IDX-006

Target SamoyedMasterChef

Category General Smart Contract Vulnerability

CWE CWE-710: Improper Adherence to Coding Standard

Risk Severity: Medium

Impact: Medium
The controlling authorities can change the critical state variables to gain additional profit.
Thus, it is unfair to the other users.

Likelihood: Medium
There is nothing to restrict the changes from being done; however, these actions can only
be performed by the contract owner.

Status Resolved
SamoyedFinance team has resolved this issue as suggested by implementing a timelock
mechanism. The SamoyedMasterChef contract is now owned by the Timelock contract
with 1 day minimum delay.

Timelock contract:
https://bscscan.com/address/0xe355bbb2ebc9986b16a42a8748c729ee849baf8

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Ownership transfer of SamoyedMasterChef to Timelock contract:
https://bscscan.com/tx/0xa6a2fb3238d5daf35e3bca5dabfb61665b83acd528381d793ac20
cb0bfcb25f4#eventlog

Platform users should monitor the execution of functions in the timelock and act
accordingly.

5.6.1. Description
Critical state variables can be updated any time by the controlling authorities. Changes in these variables can
cause impacts to the users, so the users should accept or be notified before these changes are effective.

However, there is currently no constraint to prevent the authorities from modifying these variables without
notifying the users.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 25

https://bscscan.com/address/0xe355bbb2ebc9986b16a42a8748c729ee849baf8
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a
https://bscscan.com/tx/0xa6a2fb3238d5daf35e3bca5dabfb61665b83acd528381d793ac20cb0bfcb25f4#eventlog
https://bscscan.com/tx/0xa6a2fb3238d5daf35e3bca5dabfb61665b83acd528381d793ac20cb0bfcb25f4#eventlog

Public

The controllable privileged state update functions are as follows:

File Contract Function Modifier

SamoyedMasterChef.sol (L:100) SamoyedMasterChef updateMultiplier() onlyOwner

SamoyedMasterChef.sol (L:110) SamoyedMasterChef add() onlyOwner

SamoyedMasterChef.sol (L:135) SamoyedMasterChef set() onlyOwner

SamoyedMasterChef.sol (L:328) SamoyedMasterChef updateMinimumSmoy() onlyOwner

SamoyedMasterChef.sol (L:333) SamoyedMasterChef updateSmoyPerBlock() onlyOwner

Ownable.sol (L:53) SamoyedMasterChef renounceOwnership() onlyOwner

Ownable.sol (L:61) SamoyedMasterChef transferOwnership() onlyOwner

Please note that the Ownable contract is inherited from the OpenZeppelin’s library.

5.6.2. Remediation
In the ideal case, the critical state variables should not be modifiable to keep the integrity of the smart
contract. However, if modifications are needed, Inspex suggests limiting the use of these functions via the
following options:

- Implementing a community-run governance to control the use of these functions
- Using a Timelock contract to delay the changes for a sufficient amount of time, e.g., 24 hours

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 26

Public

5.7. Design Flaw in massUpdatePools() Function

ID IDX-007

Target SamoyedMasterChef

Category General Smart Contract Vulnerability

CWE CWE-400: Uncontrolled Resource Consumption

Risk Severity: Low

Impact: Medium
The massUpdatePools() function will eventually be unusable due to excessive gas usage.

Likelihood: Low
It is very unlikely that the poolInfo size will be raised until the massUpdatePools() is
unusable.

Status Resolved *
SamoyedFinance team has resolved this issue in the deployed contract on mainnet by
adding an enabled parameter to the pool to check whether the pool has ended or not,
and adding condition in the massUpdatePools() function to update only the pools that
have not ended.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

However, the fix implemented leads to another issue on reward miscalculation in
allocPoint and enabled parameters. This is because even if the pool is disabled
(enabled=false), the disabled pool still has effect on other pools since the pool reward
portion (allocPoint) can be more than zero, leading to lower reward to other pools
(totalAllocPoint).

For the new issue, SamoyedFinance team has clarified that the team will set a pool with
enabled = false only for the pool with allocPoint = 0 to prevent this issue.

5.7.1. Description
The massUpdatePools() function executes the updatePool() function, which is a state modifying function
for all added pools as shown below:

SamoyedMasterChef.sol

174
175
176
177
178
179

function massUpdatePools() public nonReentrant {
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {

updatePool(pid);
}

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 27

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Public

With the current design, the added pools cannot be removed. They can only be disabled by setting the
pool.allocPoint to 0. Even if a pool is disabled, the updatePool() function for this pool is still called.
Therefore, if new pools continue to be added to this contract, the poolInfo.length will continue to grow
and this function will eventually be unusable due to excessive gas usage.

5.7.2. Remediation
Inspex suggests making the contract capable of removing unnecessary or ended pools to reduce the loop
round in the massUpdatePools() function.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 28

Public

5.8. Unchecked Deposit Fee Value

ID IDX-008

Target SamoyedMasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-20: Improper Input Validation

Risk Severity: Low

Impact: Medium
The owner of SamoyedMasterChef can set minDepositFeeRate and maxDepositFeeRate
to an inappropriate amount, causing the deposit() function unusable when the fee
amount is more than 100%.

Likelihood: Low
It is very unlikely that the contract owner will set the deposit fee amount to an improper
value.

Status Resolved
SamoyedFinance team has resolved this issue as suggested in the deployed contract on
mainnet.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

5.8.1. Description
In the SamoyedMasterChef contract, add() and set() functions can be used to add a new farming pool and
update the pool's parameters. The minDepositFeeRate and the maxDepositFeeRate parameters are used
as fee rates that the user will be charged when making a deposit.

SamoyedMasterChef.sol

110
111
112
113
114
115
116
117
118
119
120

121

function add(
uint256 _allocPoint,
IBEP20 _lpToken,
bool _withUpdate,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
if (_withUpdate) {

massUpdatePools();
}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 29

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Public

122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

poolInfo.push(
PoolInfo({

lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accSmoyPerShare: 0,
minDepositFeeRate: _minDepositFeeRate,
maxDepositFeeRate: _maxDepositFeeRate

})
);

}

// Update the given pool's SMOY allocation point. Can only be called by the
owner.
function set(

uint256 _pid,
uint256 _allocPoint,
bool _withUpdate,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
if (_withUpdate) {

massUpdatePools();
}
uint256 prevAllocPoint = poolInfo[_pid].allocPoint;
poolInfo[_pid].allocPoint = _allocPoint;
poolInfo[_pid].minDepositFeeRate = _minDepositFeeRate;
poolInfo[_pid].maxDepositFeeRate = _maxDepositFeeRate;
if (prevAllocPoint != _allocPoint) {

totalAllocPoint = totalAllocPoint.sub(prevAllocPoint).add(_allocPoint);
}

}

When users deposit lpToken to the contract, the deposited amount will be deducted by
collectDepositFee() function.

SamoyedMasterChef.sol

201
202
203
204
205
206
207
208

209

function deposit(uint256 _pid, uint256 _amount) public nonReentrant {
require(_pid != 0, "SamoyedMasterChef: deposit SMOY by staking");

PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
updatePool(_pid);
if (user.amount > 0) {

uint256 pending =
user.amount.mul(pool.accSmoyPerShare).div(1e12).sub(user.rewardDebt);

if (pending > 0) {

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 30

Public

210
211
212
213
214

215
216
217
218
219
220

safeSmoyTransfer(msg.sender, pending);
}

}
if (_amount > 0) {

pool.lpToken.safeTransferFrom(address(msg.sender), address(this),
_amount);

uint256 amountAfterFee = collectDepositFee(_pid, _amount);
user.amount = user.amount.add(amountAfterFee);

}
user.rewardDebt = user.amount.mul(pool.accSmoyPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount);

}

The collectDepositFee() uses the _amount multiplied with the depositFeeRate to calculate the fee.
When the depositFeeRate is more than 100%, the deposit() function will be unusable.

SamoyedMasterChef.sol

302

303
304
305
306

307
308
309
310
311
312
313
314

function collectDepositFee(uint256 _pid, uint256 _amount) private returns
(uint256 amount) {

PoolInfo storage pool = poolInfo[_pid];
if (pool.minDepositFeeRate > 0 || pool.maxDepositFeeRate > 0) {

uint256 userBalance = smoy.balanceOf(msg.sender);
uint256 depositFeeRate = userBalance < minimumSmoy ?

pool.maxDepositFeeRate : pool.minDepositFeeRate;

uint256 fee = _amount.mul(depositFeeRate).div(10000);
pool.lpToken.transfer(feeCollectorAddr, fee);
return _amount.sub(fee);

}

return _amount;
}

5.8.2. Remediation
Inspex suggests limiting the minDepositFeeRate and the maxDepositFeeRate in the add() and the set()
as shown in the following example:

SamoyedMasterChef.sol

110
111
112
113
114
115
116

uint256 public LIMIT_MIN_DEPOSIT_FEE_RATE = 10000; // limit min fee 100%
uint256 public LIMIT_MAX_DEPOSIT_FEE_RATE = 10000; // limit max fee 100%

function add(
uint256 _allocPoint,
IBEP20 _lpToken,
bool _withUpdate,

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 31

Public

117
118
119
120

121

122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148

149

150
151
152
153
154
155
156
157

uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
require(_minDepositFeeRate <= LIMIT_MIN_DEPOSIT_FEE_RATE, "Fee rate is too

high");
require(_maxDepositFeeRate <= LIMIT_MAX_DEPOSIT_FEE_RATE, "Fee rate is too

high");

if (_withUpdate) {
massUpdatePools();

}
uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(

PoolInfo({
lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accSmoyPerShare: 0,
minDepositFeeRate: _minDepositFeeRate,
maxDepositFeeRate: _maxDepositFeeRate

})
);

}

// Update the given pool's SMOY allocation point. Can only be called by the
owner.
function set(

uint256 _pid,
uint256 _allocPoint,
bool _withUpdate,
uint256 _minDepositFeeRate,
uint256 _maxDepositFeeRate

) external onlyOwner {
require(_minDepositFeeRate <= LIMIT_MIN_DEPOSIT_FEE_RATE, "Fee rate is too

high");
require(_maxDepositFeeRate <= LIMIT_MAX_DEPOSIT_FEE_RATE, "Fee rate is too

high");

if (_withUpdate) {
massUpdatePools();

}
uint256 prevAllocPoint = poolInfo[_pid].allocPoint;
poolInfo[_pid].allocPoint = _allocPoint;
poolInfo[_pid].minDepositFeeRate = _minDepositFeeRate;
poolInfo[_pid].maxDepositFeeRate = _maxDepositFeeRate;

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 32

Public

158
159
160
161

if (prevAllocPoint != _allocPoint) {
totalAllocPoint = totalAllocPoint.sub(prevAllocPoint).add(_allocPoint);

}
}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 33

Public

5.9. Insufficient Logging for Privileged Functions

ID IDX-009

Target SamoyedMasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-778: Insufficient Logging

Risk Severity: Very Low

Impact: Low
Privileged functions' executions cannot be monitored easily by the users.

Likelihood: Low
It is not likely that the execution of the privileged functions will be a malicious action.

Status Resolved
SamoyedFinance team has resolved this issue as suggested in the deployed contract on
mainnet.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

5.9.1. Description
Privileged functions that are executable by the controlling parties are not logged properly by emitting events.
Without events, it is not easy for the public to monitor the execution of those privileged functions, allowing
the controlling parties to perform actions that cause big impacts to the platform.

For example, the owner can set the amount of $SMOY per block by executing updateSmoyPerBlock()
function in the SamoyedMasterChef contract, and no event is emitted.

The privileged functions without sufficient logging are as follows:

File Contract Function

SamoyedMasterChef.sol (L:100) SamoyedMasterChef updateMultiplier()

SamoyedMasterChef.sol (L:110) SamoyedMasterChef add()

SamoyedMasterChef.sol (L:135) SamoyedMasterChef set()

SamoyedMasterChef.sol (L:317) SamoyedMasterChef dev()

SamoyedMasterChef.sol (L:323) SamoyedMasterChef updateFeeCollector()

SamoyedMasterChef.sol (L:328) SamoyedMasterChef updateMinimumSmoy()

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 34

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Public

SamoyedMasterChef.sol (L:333) SamoyedMasterChef updateSmoyPerBlock()

5.9.2. Remediation
Inspex suggests emitting events for the execution of privileged functions, for example:

SamoyedMasterChef.sol

333
334
335
336
337

event SmoyPerBlock(uint 256);
function updateSmoyPerBlock(uint256 _smoyPerBlock) external onlyOwner {

smoyPerBlock = _smoyPerBlock;
emit SmoyPerBlock(smoyPerBlock);

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 35

Public

5.10. Unsupported Design for Deflationary Token

ID IDX-010

Target SamoyedMasterChef

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: Info

Impact: None

Likelihood: None

Status Resolved
SamoyedFinance team has resolved this issue as suggested in the deployed contract on
mainnet.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

5.10.1. Description
In the SamoyedMasterChef contract, the users can deposit their tokens to acquire rewards ($SMOY). The
deposited tokens can be a normal token or LP token depending on the pools added by the contract owner.

However, in the deposit() function, an issue could arise when the pool uses a deflationary token (the token
that reduces the circulating supply itself when it is transferred).

This means the _amount that the user deposit will be reduced due to the deflationary mechanism, but the
contract recognizes it as the full amount as in line 216.

SamoyedMasterChef.sol

201
202
203
204
205
206
207
208

209
210
211
212

function deposit(uint256 _pid, uint256 _amount) public nonReentrant {
require(_pid != 0, "SamoyedMasterChef: deposit SMOY by staking");

PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
updatePool(_pid);
if (user.amount > 0) {

uint256 pending =
user.amount.mul(pool.accSmoyPerShare).div(1e12).sub(user.rewardDebt);

if (pending > 0) {
safeSmoyTransfer(msg.sender, pending);

}
}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 36

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

Public

213
214

215
216
217
218
219
220

if (_amount > 0) {
pool.lpToken.safeTransferFrom(address(msg.sender), address(this),

_amount);
uint256 amountAfterFee = collectDepositFee(_pid, _amount);
user.amount = user.amount.add(amountAfterFee);

}
user.rewardDebt = user.amount.mul(pool.accSmoyPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount);

}

The failure of recognizing the token amount could lead to the following scenarios:

Scenario 1: Unable to withdraw staking tokens

Assuming that there is a pool in the SamoyedMasterChef contract which receives a deflationary token
($TOKEN) with 10% burn rate when the token is transferred.

Currently, there is only User A who stakes $TOKEN to the $TOKEN pool in the SamoyedMasterChef contract.

Holder Balance

User A 100

Total $TOKEN in the SamoyedMasterChef contract: 90

User B deposits 100 $TOKEN to the $TOKEN pool in the SamoyedMasterChef contract. The
SamoyedMasterChef contract will receive 90 $TOKEN since $TOKEN is 10% deduction from the deflationary
mechanism, in this case 10 $TOKEN.

Holder Balance

User A 100

User B 100

Total $TOKEN in the SamoyedMasterChef contract: 180

User B then withdraws 100 $TOKEN from the SamoyedMasterChef contract. The SamoyedMasterChef
contract will validate whether the withdrawn _amount exceeds the user.amount or not.

SamoyedMasterChef.sol

225
226
227
228
229

function withdraw(uint256 _pid, uint256 _amount) public nonReentrant {
require(_pid != 0, "SamoyedMasterChef: withdraw SMOY by unstaking");
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
require(user.amount >= _amount, "SamoyedMasterChef: withdraw: not good");

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 37

Public

230
231
232

233
234
235
236
237
238
239
240
241
242

updatePool(_pid);
uint256 pending =

user.amount.mul(pool.accSmoyPerShare).div(1e12).sub(user.rewardDebt);
if (pending > 0) {

safeSmoyTransfer(msg.sender, pending);
}
if (_amount > 0) {

user.amount = user.amount.sub(_amount);
pool.lpToken.safeTransfer(address(msg.sender), _amount);

}
user.rewardDebt = user.amount.mul(pool.accSmoyPerShare).div(1e12);
emit Withdraw(msg.sender, _pid, _amount);

}

Since User B deposited 100 $TOKEN and the balance of $TOKEN in the contract is greater than 100, User B is
allowed to withdraw 100 $TOKEN.

Holder Balance

User A 100

User B 0

Total $TOKEN in the SamoyedMasterChef contract: 80

As a result, if User A decides to withdraw 100 $TOKEN, this transaction will be reverted since the balance in
the contract is insufficient.

Scenario 2: Reward Calculation Exploit

Assuming that there is a pool in the SamoyedMasterChef contract which receives a deflationary token
($TOKEN) with 10% burn rate when the token is transferred.

Currently, there are several users who stake $TOKEN to the $TOKEN pool in the SamoyedMasterChef
contract with a total supply of 100 $TOKEN.

User A deposits 100 $TOKEN to the contract, and the contract receives 90 $TOKEN due to the deflationary
mechanism, resulting in a total supply of 190 $TOKEN.

After that, User A withdraws 100 $TOKEN from staking, the SamoyedMasterChef contract will then calculate
the rewards as in line 208.

SamoyedMasterChef.sol

201
202

function deposit(uint256 _pid, uint256 _amount) public nonReentrant {
require(_pid != 0, "SamoyedMasterChef: deposit SMOY by staking");

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 38

Public

203
204
205
206
207
208

209
210
211
212
213
214

215
216
217
218
219
220

PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
updatePool(_pid);
if (user.amount > 0) {

uint256 pending =
user.amount.mul(pool.accSmoyPerShare).div(1e12).sub(user.rewardDebt);

if (pending > 0) {
safeSmoyTransfer(msg.sender, pending);

}
}
if (_amount > 0) {

pool.lpToken.safeTransferFrom(address(msg.sender), address(this),
_amount);

uint256 amountAfterFee = collectDepositFee(_pid, _amount);
user.amount = user.amount.add(amountAfterFee);

}
user.rewardDebt = user.amount.mul(pool.accSmoyPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount);

}

During the calculation, the reward is affected by the total amount of $TOKEN (lpSupply) as in line 187.

SamoyedMasterChef.sol

182
183
184
185
186
187
188
189
190
191
192
193

194
195
196

197
198

function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
if (block.number <= pool.lastRewardBlock) {

return;
}
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (lpSupply == 0) {

pool.lastRewardBlock = block.number;
return;

}
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 smoyReward =

multiplier.mul(smoyPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
smoy.mintTo(devAddr, smoyReward.div(10));
smoy.mintTo(address(kennel), smoyReward);
pool.accSmoyPerShare =

pool.accSmoyPerShare.add(smoyReward.mul(1e12).div(lpSupply));
pool.lastRewardBlock = block.number;

}

Since the SamoyedMasterChef contract registers the user.amount of User A as 100 $TOKEN, the withdrawn
$TOKEN amount will be 100, resulting in reducing the total amount of $TOKEN in the contract to 90 $TOKEN.

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 39

Public

Hence, the value of pool.accSmoyPerShare can be increased dramatically by manipulating the total
amount of $TOKEN (lpSupply) to be as low as possible.

User A can repeatedly execute withdraw() and deposit() functions to drain the $TOKEN in the contract
until it is as low as possible, for example, 1 wei, causing accSmoyPerShare state to be overly inflated, so the
users can claim an exceedingly large amount of reward ($SMOY) from the contract.

However, since only LP tokens are planned to be used in SamoyedMasterChef pools, there is no direct
impact for this issue.

5.10.2. Remediation
Inspex suggests modifying the logic of the deposit() function to validate the amount of the received token
from the user instead of using the value of _amount parameter directly.

SamoyedMasterChef.sol

201
202
203
204
205
206
207
208

209
210
211
212
213
214
215

216

217
218
219
220
221
222

function deposit(uint256 _pid, uint256 _amount) public nonReentrant {
require(_pid != 0, "SamoyedMasterChef: deposit SMOY by staking");

PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
updatePool(_pid);
if (user.amount > 0) {

uint256 pending =
user.amount.mul(pool.accSmoyPerShare).div(1e12).sub(user.rewardDebt);

if (pending > 0) {
safeSmoyTransfer(msg.sender, pending);

}
}
if (_amount > 0) {

uint256 currentBal = pool.lpToken.balanceOf(address(this));
pool.lpToken.safeTransferFrom(address(msg.sender), address(this),

_amount);
uint256 receivedAmount = pool.lpToken.balanceOf(address(this)) -

currentBal;
uint256 amountAfterFee = collectDepositFee(_pid, receivedAmount);
user.amount = user.amount.add(amountAfterFee);

}
user.rewardDebt = user.amount.mul(pool.accSmoyPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount);

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 40

Public

5.11. Improper Function Visibility

ID IDX-011

Target SamoyToken
KennelClub
SamoyedMasterChef

Category Smart Contract Best Practice

CWE CWE-710: Improper Adherence to Coding Standards

Risk Severity: Info

Impact: None

Likelihood: None

Status No Security Impact
SamoyedFinance team has acknowledged this issue. The team however has resolved this
issue partially since SamoyedMasterChef and KennelClub contract are fixed, but
SamoyToken contract is not.

SamoyedMasterChef contract:
https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a

KennelClub Contract:
https://bscscan.com/address/0x1364e039de60522aef045095823148e5e20f649a

5.11.1. Description
Functions with public visibility copy calldata to memory when being executed, while external functions can
read directly from calldata. Memory allocation uses more resources (gas) than reading directly from calldata.

For example, the following source code shows that the mint() function of the SamoyToken contract is set to
public and it is never called from any internal function.

SamoyToken.sol

182
183
184
185

function mint(uint256 amount) public onlyOwner returns (bool) {
_mint(_msgSender(), amount);
return true;

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 41

https://bscscan.com/address/0x5D21D02378670119453530478288AEe67b807e2a
https://bscscan.com/address/0x1364e039de60522aef045095823148e5e20f649a

Public

The following table contains all functions that have public visibility and are never called from any internal
function.

File Contract Function

SamoyToken.sol (L:146) SamoyToken increaseAllowance()

SamoyToken.sol (L:165) SamoyToken decreaseAllowance()

SamoyToken.sol (L:182) SamoyToken mint()

SamoyToken.sol (L:195) SamoyToken burn()

KennelClub.sol (L:13) KennelClub mint()

KennelClub.sol (L:18) KennelClub burn()

KennelClub.sol (L:18) KennelClub safeSmoyTransfer()

SamoyedMasterChef.sol (L:201) SamoyedMasterChef deposit()

SamoyedMasterChef.sol (L:223) SamoyedMasterChef withdraw()

SamoyedMasterChef.sol (L:243) SamoyedMasterChef enterStaking()

SamoyedMasterChef.sol (L:264) SamoyedMasterChef leaveStaking()

SamoyedMasterChef.sol (L:284) SamoyedMasterChef emergencyWithdraw()

5.11.2. Remediation
Inspex suggests changing all functions' visibility to external if they are not called from any internal function
as shown in the following example:

SamoyToken.sol

182
183
184
185

function mint(uint256 amount) external onlyOwner returns (bool) {
_mint(_msgSender(), amount);
return true;

}

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 42

Public

6. Appendix

6.1. About Inspex

Inspex is formed by a team of cybersecurity experts highly experienced in various fields of cybersecurity. We
provide blockchain and smart contract professional services at the highest quality to enhance the security of
our clients and the overall blockchain ecosystem.

Follow Us On:

Website https://inspex.co

Twitter @InspexCo

Facebook https://www.facebook.com/InspexCo

Telegram @inspex_announcement

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 43

https://inspex.co
https://twitter.com/InspexCo
https://www.facebook.com/InspexCo
https://t.me/inspex_announcement

Public

6.2. References

[1] “OWASP Risk Rating Methodology.” [Online]. Available:
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology. [Accessed: 08-May-2021]

Inspex Smart Contract Audit Report: AUDIT2021020 (v1.0) 44

http://paperpile.com/b/Q1frcv/hzD0z
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
http://paperpile.com/b/Q1frcv/hzD0z

